Computing division polynomials

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wedderburn Polynomials over Division Rings

A Wedderburn polynomial over a division ring K is a minimal polynomial of an algebraic subset of K. Special cases of such polynomials include, for instance, the minimal polynomials (over the center F = Z(K)) of elements of K that are algebraic over F . In this note, we give a survey on some of our ongoing work on the structure theory of Wedderburn polynomials. Throughout the note, we work in th...

متن کامل

Division algorithms for Bernstein polynomials

Three division algorithms are presented for univariate Bernstein polynomials: an algorithm for finding the quotient and remainder of two univariate polynomials, an algorithm for calculating the GCD of an arbitrary collection of univariate polynomials, and an algorithm for computing a μ-basis for the syzygy module of an arbitrary collection of univariate polynomials. Division algorithms for mult...

متن کامل

Character Sums with Division Polynomials

We obtain nontrivial estimates of quadratic character sums of division polynomials Ψn(P ), n = 1, 2, . . ., evaluated at a given point P on an elliptic curve over a finite field of q elements. Our bounds are nontrivial if the order of P is at least q for some fixed ε > 0. This work is motivated by an open question about statistical indistinguishability of some cryptographically relevant sequenc...

متن کامل

Computing Modular Polynomials

The `th modular polynomial, φ`(x, y), parameterizes pairs of elliptic curves with an isogeny of degree ` between them. Modular polynomials provide the defining equations for modular curves, and are useful in many different aspects of computational number theory and cryptography. For example, computations with modular polynomials have been used to speed elliptic curve point-counting algorithms (...

متن کامل

Computing twisted KLV polynomials

1 The Setup {s:setup} The starting point is: a group G, a Cartan involution θ, and another involution σ of finite order, commuting with θ. It is natural to consider the coset σK = {σ ◦ int(k) | k ∈ K} ⊂ Aut(G). Every element of this coset commutes with θ. We’re mainly interested when σ is an involution, especially the case σ = θ. Now fix a pinning P = (H,B, {Xα}), and write δ, ǫ ∈ Aut(G) for th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1994

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-1994-1248973-7